

Mechanism and mitigation of earth fissure in China

Chang'an University Jianbing Peng

e-mail:dicexy_1@chd.edu.cn

April. 2017

5: Failure modes. Engineering construction design.

The damage caused by earth fissures in Fenwei basin

The damage caused by earth fissures in Xi'an

The damage caused by earth fissures in Beijing

6 kinds of cracks occurred in buildings:

vertical tensile crack, splayed tensile crack, horizontal shear crack, planar fold crack, symmetrical crack, and 3D torsional crack.

▶ Vertical tensile crack

Building desturction and the failure mode in Wanrong county, Shanxi.

$$V = \begin{cases} \frac{1}{2} (f_t + f_m)(h_2 + h_1)t \\ \frac{1}{2} (f_t h_2 + f_m h_1)t \end{cases}$$

>Splayed tensile crack

Building desturction and the failure mode in Linfen city, Shanxi.

$$\begin{cases} V = K\Delta_{1} = \frac{EL_{3}t}{3h_{3}'}\Delta_{1} \\ V = \frac{1}{2}(f_{t}h_{2} + f_{m}h_{1})t \\ VH + \frac{1}{6}f_{m}h_{1}^{2}t - \frac{1}{2}f_{t}h_{2}t(h_{1} + \frac{2}{3}h_{2}) = 0 \\ \frac{f_{m}}{f_{t}} = \frac{h_{1}}{h_{2}} \\ H = h_{1} + h_{2} + h_{3}' \end{cases}$$

► Horizontal shear crack

Building desturction and the failure mode in Wanrong county, Shanxi.

$$\begin{cases} V = K\Delta = \frac{EL_2t}{3h_3}\Delta \\ V = \frac{1}{2}(f_v h_2 + f_n h_1)t \\ VH + \frac{1}{6}f_n h_1^2 t - \frac{1}{2}f_v h_2 t (h_1 + \frac{2}{3}h_2) = 0 \\ \frac{f_n}{f_v} = \frac{h_1}{h_2} \\ H = h_1 + h_2 + h_3 \end{cases}$$

► Planar fold crack

Building desturction and the failure mode in Qingxu county, Shanxi.

>Symmetrical crack

Failure mode of symmetrical crack

▶3D torsional crack

Building desturction and the failure mode in Qingxu county, Shanxi.

Different kinds of failure modes of building foundations were displayed by large scale model tests and numerical analysis.

Photos of testing

Piled raft foundation: the activity of ground fissure cracked the tensile side of all piles and parted the raft off.

Piled raft foundation: the activity of ground fissure cracked the tensile side of all piles and parted the raft off.

Strip foundation: the strip foundation was quickly snapped by activity of earth fissure.

•Numerical simulation result: tensile and shear cracks occurred near the junction of strip foundation and ground fissure.

Flexible pavement was characterized by inclination failure, while rigid pavement was scarp failure.

Pavement: tensile, shear, bending and complex failure rule affected by the ground fissure.

Tensile failure

Shear failure

Complex failure

Bending failure

$$\begin{cases} y = e^{-\beta x} \left[\left(-\frac{q}{k} + \frac{y_0}{2} \right) \cos \beta x + \left(-\frac{\beta y_0}{6} - \frac{q}{k} + \frac{y_0}{2} \right) \sin \beta x \right] \\ M = -EI\beta^2 e^{-\beta x} \left[\left(y_0 - \frac{2q}{k} \right) \sin \beta x + \left(\frac{\beta y_0}{3} + \frac{2q}{k} - y_0 \right) \cos \beta x \right] \\ Q = -EI\beta^3 e^{-\beta x} \left[\left(-\frac{\beta y_0}{3} - \frac{4q}{k} + 2y_0 \right) \cos \beta x - \frac{\beta y_0}{3} \sin \beta x \right] \end{cases}$$

Force and displacement calculation equations of the road affected by ground fissure

Failure modes of bridge: lowering of girder, dislocation and rigid torsional shear

(b) 刚架桥立体模型~

Model test of bridge

The test section of express loop highway

1. The geo-hazard prevention and mitigation of ground fissures were applied to the buildings' design in more than 10 cities such as Beijing and Datong.

Min distance from foundation to earth fissure

基础类别		基础 位置	建筑物重要性 类别		
			1	1	Ш
刚性基础		上盘	/	/	6
I	小儿工型叫	下盘	/	/	4
条形基础	上盘	/	12	6	
	未必益叫	下盘	/	4	4
		上盘	16	8	/
筏形基础		下盘	8	4	/
箱形基础		上盘	12	6	/
		下盘	8	4	/
桩基础		上盘	16	11	/
		下盘	4	2	/

Thickness: △T=2.0×△T '

2. Setback distance values alone ground fissure

避让距离(m)检查位置建筑重要性类别	Hanging wall	Footwall
一类	50×1.5= 75	16×1.5= <mark>24</mark>
二类	50×1.5= 75	16×1.5= <mark>24</mark>
三类	50×1.2= 60	16×1. 2=19. 2 (20)

Foundation form: Box foundation, piled raft foundation and deep foundation **Superstructure**: frame structure, frame-shear structure and light brickstructure

Foundation treatment: increased strength, decrease deformation and impermeable

3. Five optimization groundwater pumping plans were raised to mitigate the development of ground fissure.

3-D geological structure and soil-water coupling model

3D geological structure model of Xi'an

Coupled model of 3D flow field and 1D consolidation in Xi'an

$$\frac{\partial}{\partial x}(K_{xx}\frac{\partial H}{\partial x}) + \frac{\partial}{\partial y}(K_{yy}\frac{\partial H}{\partial y}) + \frac{\partial}{\partial z}(K_{zz}\frac{\partial H}{\partial z}) - \hat{q} = (1 - \gamma)S_{s}\frac{\partial H}{\partial t}$$

方案一: Reduce the amount of groundwater exploitation. 方案二: Recharge groundwater regularly. 方案三: Increase the supplementary of confined aquifer. 方案四: Water pumping from shallow aquifer. 方案五: Adjust the layout and time of groundwater pumping.

The pumping-restriction program has eased the activity of earth fissure and land subsidence.

